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Abstract: In everyday life human faces shock waves and rarefaction largely in their surroundings. Hence it’s necessary to 

know the behavior of these waves to protect destructive effects. The aim of this work to observe the propagation of shock and 

rarefaction waves in various dynamics due to solve non-linear hyperbolic inviscid Burgers’ equation numerically. The models 

adopted here two numerical schemes which enable us to solve non-linear hyperbolic Burgers’ equation numerically. The first 

order explicit upwind scheme (EUDS) and second order Lax-Wendroff schemes are used to solve this equation to improve our 

understanding of the numerical diffusion (smearing) and oscillations that can be present when using such schemes. In order to 

understand the behavior of the solution we use method of characteristics to find the exact solution of inviscid Burgers’ 

equation. Numerical solutions are studied for different initial conditions and the shock and rarefaction waves are investigated 

for Riemann problem. We present stability analysis of the schemes and establish stability condition which leads to determine 

time step selection in terms of spatial step size with maximum initial value. Numerical result for these schemes are compared 

with an exact solution of inviscid Burgers’ equation in terms of accuracy by error estimation. The numerical features of the rate 

of convergence are presented graphically. This analysis helps us to understand a wide range of physical phenomenon of the 

properties of wave as well as saves in several aspects in real life. 
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1. Introduction 

In the area of continuum mechanics, shock waves are a mass 

phenomenon; based on matter their frequent occurrence are 

more or less compressible. In the state of the medium, large 

disturbances in a compressible medium propagate 

supersonically as abrupt alters. In real life, shock waves 

surround everyday humans. In nature they are generated by 

lightning, earthquakes, volcanic eruptions, and meteorite 

impact. Even in the earth, shielded by its own magnetic field. 

Shocks come into existence by artificial generation in several 

ways, such as with chemical or nuclear explosions, with the 

sonic boom of supersonic flying projectile and any supersonic 

aircraft, by a bullet pushing the air in the barrel of a rifle. 

These shock waves, which attached at the body is either steady 

waves, or unsteady ones, which change their place with 

passing time. All sorts of the mentioned shock waves as well 

as rarefaction can have destructive effects, hence steps must be 

undertaken to minimize them. Therefore we need to know the 

physical phenomenon of these waves. From the theoretical 



 American Journal of Applied Scientific Research 2022; 8(1): 18-24 19 

 

point of view shock waves as well as rarefaction are a good 

example of nonlinear wave propagations [1]. In applied 

mathematics, nonlinear partial differential equations have an 

important place to model and analyze these in real-world 

physical problems [2]. Therefore, the classical Burgers’ 

equation which is in the class of nonlinear partial differential 

equations that has been a center of interest for researchers 

studying various physical phenomena such as theory of shock 

waves, fluid dynamics, turbulent flow and gas dynamics [3-5]. 

This equation is one of the most useful formulations of the 

behavior of the shock waves in which nonlinear advection and 

diffusion can be observed [6]. The Burgers’ equation 

�� � ��� � 	����                               (1) 

is firstly studied by Harry Bateman (in 1915) who come up 

with its steady state solutions and Burgers’ explained it is a 

mathematical model for turbulent flow. Hope and Cole 

separately showed afterwards that it can be transformed into 

linear heat equation [3, 5-8]. In recent years, the Burgers’ 

equation continued to draw the attention of researchers. It is 

used as a model to test several numerical methods since it 

includes a convection term ��� and a viscosity term	����. In 

fact, Burgers’ equation represents one dimensional Navier-

Stokes equation when pressure and force terms are dropped 

from Navier-Stokes equation [6, 9]. Another importance of 

this equation is that it allows us to compare the quality of 

numerical method applied to a nonlinear equation. 

When the limit � → 0 equation (1.1) becomes a hyperbolic 

equation, called the inviscid Burgers' equation 

�� � ��� � 0                                 (2) 

This limiting equation is important because it provides a 

simple example of a conservation law [10]. A first order 

partial differential equation for �
�, 
�  is called a 

conservation law, if it can be written in the form 

�� � �
��� � 0                                (3) 

For equation (3), �
�� � �� 2�  exhibit the formation of 

shock which appear in the solution after a finite time and 

then propagating in a regular manner [11]. Based on the 

above literature studies, we motivate to investigate further 

efficient finite difference schemes for the numerical solution 

of inviscid Burgers’ equation. 

In this paper, we consider the Burgers’ equation in inviscid 

form. The inviscid Burgers’ equation serves as a basic case 

study for more complex nonlinear wave equations since it 

has the properties of nonlinear conservation laws [12]. Here, 

we use the weak solution concept as a result of the Riemann 

problem where shock and rarefaction waves are observed. 

Next, the numerical schemes explicit upwind scheme and 

Lax-Wendroff numerical scheme are perform for inviscid 

Burgers’ equation. Analyzed the stability conditions and 

efficiency of those schemes for time step selections. We 

compare the schemes with exact (weak) solution of the 

Riemann problem and estimate the relative error for two 

schemes in order to show the rate of convergence. This is the 

first time where we implement such numerical schemes for 

the simulation of shock and rarefaction waves. 

The rest part of this paper is organized as: Section 2 

includes the method and materials; Section 3 represents the 

results and discussion; and Section 4 summarizes the 

concluding remarks. 

2. Methods and Materials 

2.1. Shock 

A shock wave is surface of discontinuity propagation in a gas 

at which density and velocity experience abrupt changes. One 

can imagine two type shock waves: (positive) compression 

shocks which propagates into the direction where the density of 

the gas is a minimum, and (negative) rarefaction waves which 

propagates into the direction of maximum density. 

At the beginning of the simulation we disturb the flow 

with a velocity such as: 

�
0, 
� � ����� ����� �                         (4) 

The fasted fluid catches up the slowest one so that to 

create a velocity break. This phenomenon is called shock. 

We can notice that if the disturbance was: 

�
0, 
� � ����� ����� � ��                         (5) 

The contrary would have happen and the slope would have 

decreased [13]. 

 

Figure 1. Formation of shock. 
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2.2. Shock Curve 

A propagating wave demarcating the path at which 

densities and velocities are discontinuous is called the shock 

curve [14]. Shock, which appears in the solution after a finite 

time and then propagating in a regular manner. Figure 1 

shows an example. 

2.2.1. Exact Solution of Inviscid Burgers’ Equation 

To solve the inviscid Burgers’ equation analytically we 

consider Riemann initial value problem having piecewise 

constant functions given in the following form: 

��
�� � �

��
�� � 0, 
 ∈ �, � ∈ �                      (6) 

�
0, 
� � !��	��	
 " 0,�# 	��	
 $ 0. 

The problem consists of two parts depending on the values 

of �� and �#. 

Case I 
u' $ u(�: The initial condition is 

	�	
0, 
� � !1	��	
 + 0,0	��	
 $ 0. 

The solution of (4) is 

�
�, 
� � !1	��	
 + ��0	��	
 $ ��.  

where, ‘s’ is the shock speed, the speed at which the 

discontinuity travels. 

 

Figure 2. Characteristic curve. 

� � �, �-
� � .

�  

is obtained by the Rankine-Hugoniot jump condition [15, 

16]. 

Case II 
u' " u(�: The initial condition is 

	��

� � !0	��	
 + 0,1	��	
 $ 0. 

The solution of (4) is 

�
�, 
� � !0	��	
 + ��1	��	
 $ ��. 

where the propagation speed is 

� � �, �-
� � .

�  

is obtained by the Rankine-Hugoniot jump condition. 

The characteristic curve is 

 

Figure 3. Characteristic curve. 

2.2.2. Numerical Solution of Inviscid Burgers’ Equation 

In order to implement the numerical finite difference 

method, we discretize the plane with mesh grid size ∆
 0 ∆�. 
The grid width and time steps are taken individually. The 

temporal and spatial coordinate at grid point �1
2 , �34  is 

defined as 


2 � 
� � 5∆
, 5 � 0,1, ……… ,7 

�3 � �� � �∆�, � � 0,1, ……… ,8 

The approximate solution at a discrete set of points 

�1
2 , �34 � �23 

Using Taylor’s series expansion, we discretize the time 

derivative by forward difference formula 

��
��91�:,�;4 < 	

�;:=>?�;:
∆� 	                            (7) 

The spatial derivative by the first order backward 

difference formula 

��
��91�:,�;4 < 	

�;:?�;@>:

∆�                           (8) 

The spatial derivative by the 2
nd

 order central difference 

formula 

�A�
��A <

�;=>: ?��;: �;@>:


∆��A                        (9) 

Substituting equation (5) and (6) into (4) we have explicit 

upwind scheme in conservative form is 
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�23 . � �23 B ∆�
�∆� �1�234

� B 1�2?.3 4��  
And non-conservative form is 

�23 . � �23 B ∆�
∆� ��231�23 B �2?.3 4�               (10) 

We can drive the Lax-wendroff scheme using the modified 

equation of the non-conservative form: 

Since 
��
�� � � ��

�� � 0 

⇒ 
��
�� � B� ��

�� 

⇒ 
�
�� ���

��� � B �
�� �� ��

���  

⇒ 
�A�
��A � B ��

�� ���
��� B � �

�� ���
���  

⇒ 
�A�
��A  � B �B� ��

��� ��
�� B � �

�� ���
���  

⇒ �A�
��A  � � ���

���� B � �
�� �B� ��

���  

⇒ �A�
��A  � � ���

���� � � D���
���� � � �A�

��AE  

⇒ �A�
��A  � � ���

���� � � ���
���� � �� �A�

��A  

⇒ �A�
��A  � 2� ���

���� � �� �A�
��A  

Now �1
2 , �3 .4 � �1
2 , �34 � ∆� ��1�; , �:4
��   

� 
∆��A 
�

�A�1�; ,�:4
��A � 
∆��F  

⇒ �1
2 , �3 .4 

� �1
2 , �34 B ∆�. �1
2 , �34 ��1�;,�:4
��   

� 
∆��A 
� G2�1
2 , �34 D��1�;,�:4

�� E� � 1�

2 , �3�4� �A�1�;,�:4
��A H  

⇒ �23 . � �23 B ∆�
�∆� 1�2341�2 .3 B �2?.3 4  

� 
∆��A 
� G21�234 D�;=>: ?�;@>:

�∆� E� � 1�234� D�;=>: ?��;: �;@>:

∆��A EH  (11) 

Which is the required Lax-Wendroff scheme for inviscid 

Burgers’ equation in non-conservative form. 

3. Numerical Results and Discussion 

3.1. Stability Analysis 

By the convex combination we obtain the stability condition 

of EUDS and Lax-Wendroff Scheme. Equation (10) and (11) 

implies that the new solution is a convex combination of the 

previous solutions. That is the new solution at new time step � � 1 is an average of the solutions at the previous time step at 

the spatial nodes � � 1, � I�J � B 1. 
The stability conditions of inviscid Burgers’ equation for 

EUDS and Lax-Wenfroff scheme are as follows: 

Table 1. Stability conditions for two Schemes. 

Schemes Order of Accuracy Stability conditions 

EUDS K
∆�, ∆
� 0 + LI
2,3M�23M  ∆�
∆� + 1  

Lax-Wendroff K
∆��, ∆
�� B1 + max2Q�23R ∆�
∆� + 1  

3.2. Relative Error for Explicit Upwind and Lax-Wendroff 

Scheme 

We present finite difference schemes for �
�, 
� up to time � � 20 second in temporal grid size ∆� � 0.0025 in spatial 

domain T0,30V with spatial grid size ∆
 � 0.10 which satisfy 

the stability condition. 

 

Figure 4. Relative Error of inviscid Burgers’ Equation for EUDS. 

 

Figure 5. Relative Error of inviscid Burgers’ Equation for Lax-Wendroff 

Scheme. 

 

Figure 6. Comparison of relative error for EUDS and Lax-Wendroff scheme. 

Figures 4 and 5, we present Relative Error by using EUDS 

and Lax-Wendroff scheme for u
t, x�  up to time t �20 second in temporal grid size ∆t � 0.0025  in spatial 

domain T0,30V  with spatial grid size ∆x � 0.10 . Figure 6 

shows the comparison of relative error for the two finite 
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difference schemes. The relative error for EUDS remain 

below 0.0363  and Lax-Wendroff remain below 0.000028325 . From these figure, we found that Lax-

Wendroff scheme provides more accurate result than EUDS. 

3.3. Convergence of Relative Error 

The convergence of relative error by the scheme EUDS 

and Lax-Wendroff scheme are shown in here. The error for 

different temporal sizes are computed as presented in the 

following figures 6 to 8. 

 

Figure 7. Convergence of Relative Error for EUDS. 

 

Figure 8. Convergence of Relative Error for Lax-Wendroff Scheme. 

We observe that error reduces for smaller ∆�  and ∆
 

EUDS and Lax-Wendroff schemes are shows good rate of 

convergence. We therefore apply these scheme to show 

nonlinear phenomena shock and rarefaction which occur in 

our real life. 

3.4. Numerical Results for Shock and Rarefaction 

In this section, numerical shock and rarefaction are 

holding for the initial value problem of the inviscid Burgers’ 

equation. We compare our model to the classical and 

numerical solutions. Hence, the first and second order finite 

difference approximation methods are used. For the EUDS 

and Lax-Wendroff schemes, we examine Riemann initial 

value problems with the shock and rarefaction waves. 

Figures 9 to 16 were drawn using EUDS and Lax-

Wendroff method with a step size ∆� � 0.0250	and ∆
 �

0.0333  with a number of iterations in time as 	� � 0	�Z[, 
� � 5	�Z[ , � � 10	�Z[ , � � 15	�Z[  I�J	� � 20	�Z[ 

respectively. We can observe that for � � 0	�Z[  there is no 

oscillation but at � � 5	�Z[ oscillations shows at the corner 

points where the solution is not smooth, unlike the explicit 

upwind method. Observe that the scheme remain stable in 

spite of oscillation. However, the illustration of shock and 

rarefaction waves with a number of iterations in time 

as 	� � 0	�Z[,  � � 5	�Z[,  � � 10	�Z[ , � � 15	�Z[  I�J	� �
20	�Z[ is quite similar to the one in explicit upwind method. 

 

Figure 9. Explicit Upwind method for shock solution. 

 

Figure 10. Explicit Upwind method for shock solution in mesh form. 

 

Figure 11. Explicit Upwind method for rarefaction solution. 

 

Figure 12. Explicit Upwind method for rarefaction solution. 
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Figure 13. Lax-Wendroff method for shock solution. 

 

Figure 14. Lax-Wendroff method for shock solution in mesh form. 

 

Figure 15. Lax-Wendroff method for rarefaction solution. 

 

Figure 16. Lax-Wendroff method for rarefaction solution in mesh form. 

3.5. Comparison Between Exact Solution of Riemann 

Problem with \] � ^ and \_ � ` Numerical Schemes 

The solution for this data describes a shock which is 

propagating in the positive x-direction, with a speed of 0.5	L/� . We can compare the behavior of the numerical 

schemes, since the analytic solution is known. Figures 17 and 

18 were plotted using a step size ∆
 � 0.5000 and a time 

step	∆� � 0.0125, with a number of 80 time steps. At this 

particular time point the shock has moved to 
 � 40	from its 

initial position. By analyzing Figures 17 and 18 we can 

clearly see that the first order explicit upwind scheme has 

introduced numerical diffusion (smearing). The smearing for 

the first order upwind scheme, this being a direct feature of 

the truncation error terms of the scheme, whilst the second 

order Lax-Wendroff scheme are much more accurate at 

capturing the shock. The Lax-Wendroff scheme produces 

spurious oscillations to the left of the shock (i.e. corner point) 

as can be seen by looking at Figures 17 and 18. These 

oscillations can be gradually reduce by taking step size ∆
 as 

small. 

 

Figure 17. Comparison of Riemann weak Vs explicit upwind scheme. 

 

Figure 18. Comparison of Riemann weak Vs Lax-Wendroff scheme. 

4. Conclusion 

This research studied the inviscid Burgers’ equation 

analytically and numerically. Analytic form of the solution 

for this equation is explained by the method of 

characteristics. We studied weak solution of inviscid Burgers’ 

equation as Riemann problem. We have shown the derivation 

of the explicit finite difference schemes and analyzed the 

stability of these schemes. We computed the relative errors 

for the different schemes which shown a very good rate of 

convergence. We have shown the comparison between 

explicit upwind and Lax-Wendroff schemes with exact 

solution of Riemann problem as well. We observed that the 

first order scheme is the most dissipative method compared 

to second order scheme. The Lax-Wendroff scheme exhibited 

oscillatory motion close the corner point where shock forms. 

The two schemes illustrated the behavior of shock and 

rarefaction waves depending on the sort of the initial 

conditions. In this paper, we have looked on that the inviscid 

Burgers’ equation is a significant model to denominate the 

shock and rarefaction waves. 
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